Conversion of a $2,5,7$-Nonatrien- 4 -one to a Bicyclo[4.2.0]octenone by a Series of Electrocyclic Reactions

Barry B. Snider* and Thomas C. Harvey

Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110

Received September 17, 1993
During the attempted base-catalyzed addition of nucleophiles to trienone $\mathbf{2 b}$, we found, to our surprise, that 2b underwent base-catalyzed isomerization to give three bicyclo[4.2.0]octenones 11a-13a. We report here experiments that establish the structures of the products and suggest the mechanism for this unexpected, deep-seated rearrangement.

Trienone $\mathbf{2 b}$ was prepared by addition of the lithium reagent prepared from 1^{1} to the commercially available 4.5:1 mixture ${ }^{2}$ of ($2 E, 4 E$)- and ($2 E, 4 Z$)-2,4-hexadienal to give $2 \mathbf{a}$ in quantitative yield. Oxidation of 2 a with activated MnO_{2} provided 78% of $\mathbf{2 b}$. A 0.1 M solution of trienone 2 b in DMF was heated with 10 equiv of DBU for 2 h at $125^{\circ} \mathrm{C}$ to provide a mixture of $11 \mathrm{a}-13 \mathrm{a}$. Since the THP chiral center complicated the structure assignment,

[^0]this mixture was hydrolyzed in MeOH ($p-\mathrm{TsOH}, 30 \mathrm{~min}$, $25^{\circ} \mathrm{C}$) to give 10% of $11 \mathrm{~b}, 10 \%$ of 12 b , and 9% of 13 b .
The ${ }^{1} \mathrm{H}$ NMR spectra of each of these compounds were similar suggesting that they were stereoisomers. The chemical shifts and coupling constants of the alkene protons suggested the presence of a 4 -monosubstituted 2 -cyclohexenone. The spectra also indicated the presence of a secondary alcohol and two secondary methyl groups. Decoupling experiments established the connectivity pattern indicating that the compounds were three of the eight possible stereoisomeric bicyclo[4.2.0]octenones: the four stereoisomers $\mathbf{1 0 b} \mathbf{- 1 3 b}$ and four additional isomers with the substituents on C_{7} and C_{8} cis rather than trans.
The stereochemistry of the three diastereomers was unambiguously assigned as $11 \mathrm{~b}-13 \mathrm{~b}$ based on the coupling constants and the NOE's observed in ROESY experiments. The observed coupling constants for 11b-13b agreed very well with those calculated by MM2 for the most stable conformers shown in Figure 1. ${ }^{3}$ In the least-polar isomer 11b, there was a strong NOE between H_{1} and both methyl groups, indicating that H_{1} and both methyl groups are on the convex face. This was confirmed by the coupling constant, $J=10.6 \mathrm{~Hz}$, between H_{1} and H_{2}, which verified that these hydrogens are trans and diaxial on the cyclohexenone. A moderate NOE between H_{6} and H_{8} across the cyclobutane ring indicated that these hydrogens are on the same face. The absence of an NOE between H_{1} and H_{7} suggested that these hydrogens are not on the same face.

In the middle isomer 13b, there was a strong NOE between H_{8} and both methyl groups that established that H_{8} and both methyl groups are on the concave face. A moderate NOE between H_{1} and H_{7} across the cyclobutane ring indicated that these hydrogens are on the convex face. The stereochemistry at C_{2} was confirmed by a moderate NOE between H_{2} and H_{6}.

In the most-polar isomer 12b, there was a strong NOE between H_{1} and C_{2}-Me and between H_{2} and C_{7}-Me and no NOE between H_{6} and H_{8}. The stereochemistry was confirmed by the coupling constant, $J \approx 0 \mathrm{~Hz}$, between H_{1} and H_{2}, which established that these hydrogens are trans with a dihedral angle of 90° on the cyclohexenone.

The stereochemical assignments of 12 b and 13 b were confirmed by equilibration of each stereoisomer with DBU in DMF at $90^{\circ} \mathrm{C}$ for 1 h to give the same $58: 42$ mixture of 13 b and 12 b . The third stereoisomer 11 b was stable to these conditions.

TLC analysis of the reaction of $\mathbf{2 b}$ with DBU in DMF at $125^{\circ} \mathrm{C}$ indicated the presence of a transient intermediate. At lower temperatures this intermediate did not react further. Treatment of 2 b with DBU in DMF for 2 hat $55^{\circ} \mathrm{C}$ gave 18% of 3 as a $1: 1$ mixture of diastereomers. The stereochemistry of the enol ether double bond was established by the coupling constant, $J=6.2 \mathrm{~Hz}$, which is consistent only with a cis double bond. ${ }^{4}$ Hydrolysis of the enol ether double bond with $p-\mathrm{TsOH}$ in MeOH gave dimethyl acetal 14, confirming the structure assignment of 3 .

The most likely mechanism for the formation of bicyclo[4.2.0]octenones 11a-13a involves the conrotatory electrocyclic ring closure ${ }^{5}$ of tetraenolate 6 to give cyclooc-

[^1]

Figure 1. Calculated conformations of 11b-13b.
tatrienolate 7, followed by the disrotatory electrocyclic ring closure ${ }^{5 b, 6}$ of 7 to give cyclohexadienolates 8 and 9 and protonation to give 10a-13a. The equilibration studies discussed above indicate that 12a and 13a will equilibrate under these reaction conditions as will 10a and 11a so that thermodynamic mixtures at C_{2} are probably obtained.

Cyclooctatrienolate 7 with the methyl and OTHP substituents trans would be obtained from conrotatory cyclization of a tetraene with the two terminal double bonds either both cis or both trans. The isolation of 3 with a cis 1,2 -double bond suggests that tetraenolate 6 with both terminal double bonds cis is the more likely intermediate. The conversion of 3 to 6 requires the inversion of stereochemistry of both double bonds of the major $7 E$ isomer of dienone 3. The most likely mechanism for this process is the conrotatory closure of dienone 3 to give trans 3,4-disubstituted cyclobutene 4 that can undergo an allowed conrotatory opening to regenerate trans,transdienone 3 or generate cis,cis-dienone 5 . This isomerization is well-precedented in the work of Marvel, who established that $(1 E, 3 Z, 5 Z, 7 E)$-1,8-diphenyloctatetraene isomerized at $175^{\circ} \mathrm{C}$ to the all E isomer by a process compatible with conrotatory ring closure to a 3,4 -trans-disubstituted cyclobutene followed by conrotatory ring opening to give the all trans isomer. ${ }^{7}$ Enolization of all cis-trienone 5 will give tetraenolate 6 that will cyclize to give 7 .

The enolate of $\mathbf{6}$ and $\mathbf{7}$ may facilitate the electrocyclic ring closure reaction analogous to the acceleration of the oxy-Cope reaction by conversion of the alcohol to the alkoxide. Although the cyclization of trienols and trienyl silyl ethers to give cyclohexenones have been described, ${ }^{8}$ we are unaware of any studies indicating the effect of the oxygen on the rate of the cyclization.

[^2]Conrotatory electrocyclic ring closures of ($1,3 Z, 5 Z, 7$)octatetraenes to give 1,3,5-cyclooctatrienes that undergo a second, disrotatory electrocyclic ring closure to give a bicyclo[4.2.0]octadiene have been extensively studied. ${ }^{5,6}$ To the best of our knowledge, both the electrocyclization of tetraenolates and the generation of the required Z geometry of the central double bonds of the octatetraene by thermal isomerization of E double bonds is unprecedented.

The base-catalyzed conversion of $2 \mathbf{b}$ to 11a-13a provides a very simple route to highly substituted bicyclo[4.2.0]octenones that may be of value for the synthesis of the antibiotic MK4588. ${ }^{9}$

Experimental Section

General Procedures. NMR spectra were recorded at 300 MHz in CDCl_{3}. Chemical shifts are reported in δ using TMS as an internal standard and coupling constants in hertz. DQFCOSY and ROESY experiments were recorded at 500 MHz on a Bruker AM1 spectrometer. All reactions were carried out under N_{2}. DMF was purified by concentration under reduced pressure until one-third of its volume had evaporated; the remaining DMF was stored over $4-\AA$ molecular sieves.
(2E,5E,7E)-3-Methyl-1-[(tetrahydro-2H-pyran-2-yl)oxy]-nona-2,5,7-trien-4-ol (2). t-BuLi ($16.24 \mathrm{~mL}, 1.65 \mathrm{M}$ in pentane, $26.8 \mathrm{mmol})$ was added dropwise to a solution of $1^{1}(3.500 \mathrm{~g}, 14.8$ mmol) in 40 mL of THF at $-78^{\circ} \mathrm{C}$. The solution was stirred for 5 min , and 2,4-hexadienal ($95 \%, 4.5: 14 E$ - and $4 Z$-isomers, ${ }^{2} 1.48$ $\mathrm{mL}, 12.8 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and quenched by the addition of 40 mL of saturated aqueous NaHCO_{3} solution and 20 mL of EtOAc. The layers were separated, and the organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 40 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give $3.756 \mathrm{~g}(100 \%)$ of crude 2 a as a 4:17E-7Z mixture that was used without purification: ${ }^{1} \mathrm{H}$ NMR (7E) 6.23 (dd, $1, J=10.4,14.7$), 6.05 (ddd, $1, J=1.5,10.6,15.0$), $5.65-5.80(\mathrm{~m}, 2), 5.55$ (dd, 1, $J=6.6,15.8$), 4.63 (br, 1), 4.57 (br d, 1, $J=6.6$), $4.30(\mathrm{~m}, 1), 4.07(\mathrm{~m}, 1), 3.88$ (ddd, $1, J=3.8,7.6$, $11.4), 3.53$ (m, 1), 1.5-1.9 (m, 12); (7Z) 6.59 (dddd, $1, J=1.1,1.1$, 11.2, 15.2).
(2E,5E,7E)-3-Methyl-1-[(tetrahydro-2H-pyran-2-yl)oxy-nona-2,5,7-trien-4-one (2b). Activated $\mathrm{MnO}_{2}(1.4 \mathrm{~g}, 16 \mathrm{mmol}$) was added to a solution of $2 \mathrm{a}(389 \mathrm{mg}, 1.54 \mathrm{mmol}, 4: 17 E-7 Z)$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt. The mixture was stirred for 2 h and filtered through a plug of Celite 521. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $85: 15$ hexanes-EtOAc. The combined filtrates were concentrated under reduced pressure to yield 329 mg of crude 2b. Flash chromatography (85:15 hexanes-EtOAc) provided 270 mg (78% based on recovered 2 a) of trienone $\mathbf{2 b}$ as a 5:1 mixture of $7 E: 7 Z$ isomers, followed by 41 mg of recovered 2a: ${ }^{1} \mathrm{H}$ NMR (7E) 7.22 (dd, $1, J=9.5,15.0$), $6.66(\mathrm{~m}, 2), 6.22(\mathrm{~m}, 2)$, 4.68 (dd, $1, J=2.9,3.9$), 4.50 (dd, $1, J=5.3,14.7$), 4.28 (dd, 1 , $J=6.0,14.7$), 3.89 (ddd, $1, J=3.7,7.4,11.1$), 3.55 (ddd, $1, J=$ $4.2,4.9,11.1), 1.7-1.9$ (m, 8), 1.5-1.7 (m, 4); (7Z) 7.62 (ddd, 1, J $=1.0,11.8,15.1) ;{ }^{13} \mathrm{C}$ NMR (7E) 191.9, 143.7, 140.0, 138.5, 137.5, $130.5,122.6,98.6,64.5,62.4,30.6,25.4,19.4,18.8,12.2$; IR (neat) $1659,1629,1590,1135,1121,1067,1030,1000 \mathrm{~cm}^{-1}$.
(1Z,5E,7E)-3-Methyl-1-[(tetrahydro-2H-pyran-2-yl)oxy]-nona-1,5,7-trien-4-one (3). A solution of 2 b ($41 \mathrm{mg}, 0.16 \mathrm{mmol}$, 6:17E-7Z) and DBU ($0.24 \mathrm{~mL}, 1.6 \mathrm{mmol}$) in 1.5 mL of DMF was warmed at $55^{\circ} \mathrm{C}$ for 2 h . Workup as described below afforded 78 mg of a dark, orange-brown oil. Flash chromatography (85:15 hexanes-EtOAc) provided $7.3 \mathrm{mg}(18 \%)$ of 3 as a $4: 17 E-7 \mathrm{Z}$ mixture and $\approx 1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR ($7 E$) 7.25 (ddd, $1, J=1.6,8.7,15.2$), 6.31 (dd, $0.5 \times 1, J=0.9,6.2, \mathrm{H}_{1}$), 6.28 (dd, $\left.0.5 \times 1, J=0.9,6.2, \mathrm{H}_{1}\right), 6.15-6.30(\mathrm{~m}, 3), 4.97(\mathrm{dd}, 0.5 \times$ $1, J=2.9,2.9$), 4.95 (dd, $0.5 \times 1, J=3.1,3.1$), 4.43 (br dd, $1, J$ $\left.=6.2,9.5, \mathrm{H}_{2}\right), 3.92(\mathrm{br} \mathrm{dq}, 1, J=9.5,6.8), 3.83(\mathrm{~m}, 1), 3.60(\mathrm{~m}$,
(9) Itoh, J.; Takeuchi, Y.; Gomi, S.; Inouye, S.; Mikawa, T.; Yoshikawa, N.; Ohkishi, H. J. Antibiot. 1990, 43, 456.
1), 1.86 (br d, $3, J=5.1$), 1.56-1.91 (m, 6), 1.19 (d, $0.5 \times 3, J=$ 6.8), 1.18 (d, $0.5 \times 3, J=6.8$); (72) 7.63 (ddd, $0.5 \times 1, J=0.9$, 10.4, 11.4), 7.62 (ddd, $0.5 \times 1, J=0.9,10.4,11.4$); ${ }^{13} \mathrm{C}$ NMR ($7 E$) (142.9, 142.8), (142.6, 142.4), (139.8, 139.7), (130.5, 130.5), 126.5, (107.6, 107.3), (98.6, 98.6), (62.0, 61.9), (40.9, 40.8), (29.7, 29.7), (25.1, 25.1), 18.8, (18.7, 18.6), (16.4, 16.4), the $\mathrm{C}=0$ was not observed; IR (neat) 1688, 1667, 1636, 1595, 1124, $1027 \mathrm{~cm}^{-1}$.
Preparation of ($1 \alpha, 2 \alpha, 6 \alpha, 7 \alpha, 8 \beta$)-, ($1 \alpha, 2 \alpha, 6 \alpha, 7 \beta, 8 \alpha$),- and ($1 \alpha, 2 \beta, 6 \alpha, 7 \beta, 8 \alpha$)-8-Hydroxy-2,7-dimethylbicyclo[4.2.0]oct-4-en-3-one ($11 \mathrm{~b}, 12 \mathrm{~b}$, and 13b). A solution of 2 b ($267 \mathrm{mg}, 1.1$ mmol, 5:1 7E-7Z and DBU ($1.60 \mathrm{~mL}, 10.7 \mathrm{mmol}$) in 10 mL of DMF was slowly heated to $125^{\circ} \mathrm{C}$ over 1 h . The solution was heated for an additional 1 h , cooled to $25^{\circ} \mathrm{C}$, quenched with 20 mL of saturated aqueous NaHCO_{3} solution, and then diluted with 10 mL of EtOAc. The layers were separated, and the organic layer was washed with saturated aqueous NaHCO_{3} solution (2 $\times 20 \mathrm{~mL}$). The aqueous layers were combined and extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered through silica gel, and concentrated under reduced pressure to give 220 mg of crude 11a-13a that still contained some residual DMF. This orange oil was dissolved in 10 mL of MeOH , and $\mathrm{p}-\mathrm{TsOH}(20 \mathrm{mg})$ was added. The solution was stirred for 30 min at $25^{\circ} \mathrm{C}$, quenched with 10 mL of saturated aqueous $\mathrm{NaHCO}{ }_{s}$ solution, and then diluted with 10 mL of EtOAc. The layers were separated, and the organic layer was washed with saturated NaHCO_{3} solution ($2 \times 10 \mathrm{~mL}$). The aqueous layers were combined and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give 102 mg of crude $11 \mathrm{~b}-13 \mathrm{~b}$. Flash chromatography ($7: 3$ hexanes-EtOAc) provided 14.3 mg (10%) of cyclohexenone 11 b , followed by $14.0 \mathrm{mg}(9 \%)$ of cyclohexenone 13 b and 14.5 mg (10%) of cyclohexenone 12 b , as colorless oils.

The data for 11b: ${ }^{1} \mathrm{H}$ NMR 6.78 (ddd, $1, J=1.0,4.6,10.0, \mathrm{H}_{5}$), $5.95\left(\mathrm{dd}, 1, J=1.2,10.0, \mathrm{H}_{4}\right), 4.00\left(\mathrm{ddd}, 1, J=5.6,7.1,7.3, \mathrm{H}_{8}\right.$), $2.80\left(\mathrm{dq}, 1, J=10.6,6.5, \mathrm{H}_{2}\right.$), 2.60 (dddd, $1, J=1.0,7.0,7.6,10.6$, H_{1}), 2.35 (ddq, $1, J=7.3,9.4,6.7, \mathrm{H}_{7}$), 2.15 (dddd, $1, J=1.2,4.6$, $7.6,9.4, \mathrm{H}_{8}$), $1.7(\mathrm{~d}, 1, J=5.7, \mathrm{OH}), 1.25\left(\mathrm{~d}, 3, J=6.7, \mathrm{C}_{7} \mathrm{CH}_{3}\right)$, $1.15\left(\mathrm{~d}, 3, J=6.5, \mathrm{C}_{2}-\mathrm{CH}_{3}\right.$); ${ }^{18} \mathrm{C}$ NMR $146.8,128.4,71.0,46.4,44.2$, 38.0, 33.9, 17.7, 15.2, the $\mathrm{C}=\mathrm{O}$ was not observed; IR (neat) 3420, $1665 \mathrm{~cm}^{-1}$.

The data for 12b: ${ }^{1} \mathrm{H}$ NMR 6.84 (ddd, $1, J=1.0,3.8,10.3, \mathrm{H}_{5}$), 6.04 (dd, $1, J=1.7,10.3, \mathrm{H}_{4}$), 3.64 (ddd, $J=6.3,7,8, \mathrm{H}_{8}$), 2.92
(dddd, $\left.1, J=1.7,3.8,7.6,7.8, \mathrm{H}_{6}\right), 2.60\left(\mathrm{br} \mathrm{q}, 1, J=7.4, \mathrm{H}_{2}\right), 2.42$ ($\mathrm{m}, 2, \mathrm{H}_{1}$ and H_{7}), $1.82(\mathrm{~d}, 1, J=6.3, \mathrm{OH}$), $1.15(\mathrm{~d}, 3, J=7.4$, $\mathrm{C}_{2}-\mathrm{CH}_{3}$), 1.08 (d, $3, J=8.0, \mathrm{C}_{7}-\mathrm{CH}_{3}$); ${ }^{19} \mathrm{C}$ NMR 149.1, $128.8,75.6$, $47.2,42.3,41.5,28.4,18.8,13.3$, the $\mathrm{C}=0$ was not observed; IR (neat) $3415,1665 \mathrm{~cm}^{-1}$.

The data for 13 b : ${ }^{1} \mathrm{H}$ NMR 6.78 (ddd, $1, J=1.2,3.9,10.2, \mathrm{H}_{6}$), 6.12 (dd, $1, J=1.8,10.2, \mathrm{H}_{4}$), 3.64 (ddd, $1, J=6.3,7,8, \mathrm{H}_{8}$), 2.96 (dddd, $1, J=1.8,3.9,7,9, \mathrm{H}_{8}$), 2.68 (dddd, $1, J=1.2,6.8,7,8$, $\left.\mathrm{H}_{1}\right), 2.58\left(\mathrm{dq}, 1, J=6.8,6.8, \mathrm{H}_{2}\right), 2.43\left(\mathrm{ddq}, 1, J=6.9,9,6.9, \mathrm{H}_{7}\right)$, $1.74(\mathrm{~d}, \mathrm{I}, J=6.3, \mathrm{OH}), 1.20\left(\mathrm{~d}, 3, J=6.8, \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 1.06(\mathrm{~d}, 3$, $J=6.9, \mathrm{C}_{7}-\mathrm{CH}_{3}$; ${ }^{13} \mathrm{C}$ NMR 148.5, 130.4, 75.0, 46.1, 42.6, 40.3, $30.5,13.0,11.5$, the $\mathrm{C}=0$ was not observed; IR (neat) 3415,1665 cm^{-1}.

Equilibration of $11 \mathrm{~b}-13 \mathrm{~b}$. A solution of $11 \mathrm{~b}(3.9 \mathrm{mg}, 0.024$ mmol) and 40 mg of DBU in 0.75 mL of DMF was heated at 90 ${ }^{\circ} \mathrm{C}$ for 1 h . Workup as described above gave 3.2 mg of pure recovered 11b. A similar reaction starting with either 3.6 mg of 13 b or 3.2 mg of 12 b gave 3.0 mg of a $58: 42$ mixture of 13 b and 12b as determined by ${ }^{1} \mathrm{H}$ NMR analysis.
(5E,7E)-1,1-Dimethoxy-3-methylnona-5,7-dien-4-one (14). A solution of $3(8.6 \mathrm{mg}, 0.034 \mathrm{mmol}, 4: 17 E-7 Z)$ and 2 mg of $p-\mathrm{TsOH}$ in 2 mL of MeOH was stirred for 1 h at $25^{\circ} \mathrm{C}$. Normal workup provided 8.6 mg of a colorless oil. Flash chromatography (85:15 hexanes-EtOAc) provided $2.9 \mathrm{mg}(40 \%)$ of dimethyl acetal 14 as a $5: 17 E-7 Z$ mixture: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) (7E) 7.20 (br dd, $1, J=10.0,15.4), 6.21(\mathrm{~m}, 2), 6.12(\mathrm{~d}, 1, J=15.4), 4.33(\mathrm{dd}, 1$, $J=5.7,5.8, \mathrm{H}_{1}$), $3.31(\mathrm{~s}, 3), 3.29(\mathrm{~s}, 3), 2.92$ (ddq, $1, J=7.2,7.2$, $7.0, \mathrm{H}_{3}$), 2.07 (ddd, $1, J=5.7,7.2,14, \mathrm{H}_{2}$), 1.87 (d, $3, J=4.8, \mathrm{H}_{9}$), 1.60 (ddd, $1, J=5.8,7.2,14, \mathrm{H}_{2}$), 1.12 (d, $3, J=7.0, \mathrm{C}_{5}-\mathrm{CH}_{3}$); (7Z) 7.60 (ddd, $0.7,11.3,14.8$); IR (neat) 1685, 1660, 1636, 1595, 1125, $1069,1049 \mathrm{~cm}^{-1}$.

Acknowledgment. We are grateful to the National Institutes of Health for financial support. We thank Mr. Anping Wang for carrying out the ROESY experiments.

Supplementary Material Available: ${ }^{14} \mathrm{H}$ and ${ }^{18} \mathrm{C}$ NMR spectra for $2 \mathrm{a}, 2 \mathrm{~b}, 3,11 \mathrm{~b}, 12 \mathrm{~b}, 13 \mathrm{~b}$, and 14 (12 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: (1) Corey, E. J.; Bock, M. G.; Kozikowski, A. P.; Rama Rao, A. V.; Floyd, D.; Lipshutz, B. Tetrahedron Lett. 1978, 1051.
 (2) (a) Viola, A.; MacMillan, J. H. J. Am. Chem. Soc. 1970, 92, 2404. (b) Schiess, P.; Radimerski, P. Helv. Chim. Acta 1974, 57, 2583.

[^1]: (3) MODEL, version 5.96, obtained from Prof. Kosta Steliou, University of Montreal, was used for molecular mechanics calculations.
 (4) Laszlo, P.; Schleyer, P. R. Bull. Chim. Soc. Fr. 1964, 87.

[^2]: (5) (a) Marvell, E. N. Thermal Electrocyclic Reactions; Academic Press: New York, 1980; Chapter 8. (b) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J. Am. Chem. Soc. 1982, 104, 5555.
 (6) Reference 5a, Chapter 7.
 (7) (a) Reference 5a, pp 150-151. (b) Marvell, E. N.; Seubert, J.; Vogt, G.; Zimmer, G.; Moy, G.; Siegmann, J. R. Tetrahedron 1978, 34, 1323.
 (8) (a) Fehr, C.; Galindo, J.; Guntern, O. Tetrahedron Lett. 1990, 31, 4021. (b) Hickman, D. N.; Wallace, T. W.; Wardleworth, J. M. Tetrahedron Lett. 1991, 32, 819. (c) Tubul, A.; Santelli, M. J. Chem. Soc., Chem. Commun. 1988, 191.

